
An Integrated Framework for Parameter-based
Optimization of Scientific Workflows ∗

Vijay S. Kumar,
P. Sadayappan

Department of Computer
Science and Engineering

Ohio State University
Columbus, Ohio 43210

{kumarvi,saday}
@cse.ohio-state.edu

Gaurang Mehta, Karan
Vahi, Ewa Deelman

Advanced Systems Division
Information Sciences Institute

University of Southern
California

Marina del Rey, California
90292

{gmehta,vahi,deelman}
@isi.edu

Varun Ratnakar, Jihie
Kim, Yolanda Gil

Intelligent Systems Division
Information Sciences Institute

University of Southern
California

Marina del Rey, California
90292

{varunr,jihie,gil}@isi.edu

Mary Hall
School of Computing

University of Utah
Salt Lake City, Utah 84112

mhall@cs.utah.edu

Tahsin Kurc, Joel Saltz
Center for Comprehensive

Informatics
Emory University

Atlanta, Georgia 30307
{tkurc,jhsaltz}@emory.edu

ABSTRACT

Data analysis processes in scientific applications can be ex-
pressed as coarse-grain workflows of complex data processing
operations with data flow dependencies between them. Per-
formance optimization of these workflows can be viewed as
a search for a set of optimal values in a multi-dimensional
parameter space. While some performance parameters such
as grouping of workflow components and their mapping to
machines do not affect the accuracy of the output, others
may dictate trading the output quality of individual com-
ponents (and of the whole workflow) for performance. This
paper describes an integrated framework which is capable
of supporting performance optimizations along multiple di-
mensions of the parameter space. Using two real-world ap-
plications in the spatial data analysis domain, we present an
experimental evaluation of the proposed framework.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems

∗This research was supported in part by the National Science
Foundation under Grants #CNS-0403342, #CNS-0426241,
#CSR-0509517, #CSR-0615412, #ANI-0330612, #CCF-
0342615, #CNS-0203846, #ACI-0130437, #CNS-0615155,
#CNS-0406386, and Ohio Board of Regents BRTTC
#BRTT02-0003 and AGMT TECH-04049 and NIH grants
#R24 HL085343, #R01 LM009239, and #79077CBS10.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’09, June 11–13, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-587-1/09/06 ...$5.00.

and Software—Distributed Systems, Performance evaluation
(efficiency and effectiveness); H.4 [Information Systems
Applications]: Workflow Management

General Terms
Performance, Design

Keywords
scientific workflow, performance parameters, semantic rep-
resentations, Grid, application QoS

1. INTRODUCTION
Advances in digital sensor technology and the complex nu-

merical models of physical processes in many scientific do-
mains are bringing about the acquisition of enormous vol-
umes of data. For example, a dataset of high resolution
image data obtained from digital microscopes or large scale
sky telescopes can easily reach hundreds of Gigabytes, even
multiple Terabytes in size1. These large data volumes are
transformed into meaningful information via data analysis
processes. Analysis processes in scientific applications are
expressed in the form of workflows or networks of compo-
nents, where each component corresponds to an application-
specific data processing operation. Image datasets, for in-
stance, are analyzed by applying workflows consisting of
filtering, data correction, segmentation, and classification
steps. Due to the data and compute intensive nature of
scientific data analysis applications, scalable solutions are
required to achieve desirable performance. Software sys-
tems supporting analysis of large datasets implement sev-

1DMetrix array microscopes can scan a slide at 20x+ res-
olution in less than a minute. The Large Synoptic Survey
Telescope will be able to capture a 3.5 Gigapixel image every
6 seconds, when it is activated.

eral optimization mechanisms to reduce execution times.
First, workflow management systems take advantage of dis-
tributed computing resources in the Grid. The Grid environ-
ment provides computation and storage resources; however,
these resources are often located at disparate sites managed
within different security and administrative domains. Work-
flow systems support execution of workflow components at
different sites (Grid nodes) and reliable, efficient staging of
data across the Grid nodes. A Grid node may itself be a
cluster system or a potentially heterogeneous and dynamic
collection of machines. Second, for each portion of a work-
flow mapped to such cluster systems, they enable fine-grain
mapping and scheduling of tasks onto such machines.

The performance of workflows is greatly affected by cer-
tain parameters to the application that direct the amount
of work to be performed on a node or the volume of data
to be processed at a time. The optimal value of such pa-
rameters can be highly dependent on the execution con-
text. Therefore, performance optimization for workflows
can be viewed as a search for a set of optimal values in
a multi-dimensional parameter space, given a particular ex-
ecution context. Workflow-level performance parameters in-
clude grouping of data processing components comprising
the workflow into meta-components, distribution of com-
ponents across sites and machines within a site, and the
number of instances of a component to be executed. These
parameters impact computation, I/O, and communication
overheads, and as a result, the total execution time. Another
means of improving performance is by adjusting component-
level performance parameters in a workflow. An example
of such a parameter is the data chunk size in applications
which analyze spatial datasets. Another example is the ver-
sion of the algorithm employed by a component to process
the data. Systems should provide support to improve per-
formance through manipulation of such parameters along
multiple dimensions of the parameter space.

In this work, we classify workflow-level and component-
level performance parameters into two categories: (i) Quality-
preserving parameters (such as data chunk size) can affect
the performance of an operation without affecting the qual-
ity of the analysis output, and (ii) Quality-trading param-
eters can trade the quality of the output for performance
gains, and vice-versa. An example of a quality-trading pa-
rameter is the ‘resolution’ at which image data are pro-
cessed. A classification algorithm might process low-resolution
images quickly, but its classification accuracy would likely
be lower compared to that for higher resolution images.
When optimizations involve performance-quality trade-offs,
users may supplement their queries with application-level
quality-of-service (QoS) requirements that place constraints
on the quality of output [14]. For instance, when images
in a dataset are processed at different resolutions to speed
up the classification process, the user may request that a
certain minimum accuracy threshold be achieved.

In this paper, we describe the design and implementa-
tion of a workflow system that supports application execu-
tion in a distributed environment and enables performance
optimization via manipulation of quality-preserving and/or
quality-trading parameters. The proposed system integrates
four subsystems: WINGS [10] to facilitate high-level, seman-
tic descriptions of workflows, and Pegasus [9], Condor [19],
and DataCutter [1] to support scalable workflow execution
across multiple institutions and on distributed clusters within

an institution. In our system, application developers and
end-users can provide high-level, semantic descriptions of
application structure and data characteristics. As our ini-
tial focus is on optimizing spatial data analysis applica-
tions, we have developed extensions to the core ontologies
in WINGS to describe spatial datasets and to enable auto-
matic composition and validation of the corresponding work-
flows. Once a workflow has been specified, users can ad-
just workflow-level and component-level parameters based
on their QoS requirements to enable performance optimiza-
tions during execution. We have extended Condor’s default
job-scheduling mechanism to support performance optimiza-
tions stemming from performance-quality trade-offs. We
show how parameter-based optimizations can be supported
for real-world biomedical image analysis workflows using two
cluster systems located at two different departments at the
Ohio State University.

2. RELATED WORK
Application configuration for performance improvements

in scientific workflows has been examined to varying de-
grees within different application domains. Grid workflow
management systems like Taverna [18], Kepler [16] and Pe-
gasus [9] seek to minimize the makespan by manipulating
workflow-level parameters such as grouping and mapping
of a workflow’s components. Our framework extends such
support by providing the combined use of task- and data-
parallelism and data streaming within each component and
across multiple components in a workflow to fully exploit
the capabilities of Grid sites that are high-end cluster sys-
tems. Glatard et. al. [11] describe the combined use of data
parallelism, services parallelism and job grouping for data-
intensive application service-based workflows. Our work
is in the context of task-based workflows and additionally
addresses performance improvements by adjusting domain-
specific component-level parameters.

The Common Component Architecture(CCA) forum2 ad-
dresses domain-specific parameters for components and the
efficient coupling of parallel scientific components. They
seek to support performance improvements through the use
of external tunability interfaces [3, 17]. Active Harmony [6,
7] is an automatic parameter tuning system that permits
on-line rewriting of parameter values at run-time, and uses
a simplex method to guide the search for optimal parame-
ter values. Although we share similar motivations with the
above works, we target data-intensive applications running
on the Grid. We account for performance variations brought
about by the characteristics of dataset instances within a do-
main.

Our work also supports application-level QoS requirements
by tuning quality-trading parameters in the workflows. The
performance/quality trade-off problem and tuning of quality-
trading parameters for workflows has been examined be-
fore in service-based workflows [2] and component-based sys-
tems [8]. But these works are geared towards system-level
QoS and optimization of system-related metrics such as data
transfer rates, throughput and service affinity etc. Application-
level QoS for workflows has been addressed in [22, 4]. We
support trade-offs based on quality of data output from the
application components and integrate such parameter tun-
ing with a standard job scheduling system like Condor.

2http://www.cca-forum.org

Supporting domain-specific parameter-based optimizations
requires the representation of these parameters and their
relations with various performance and quality metrics in
a system-comprehensible manner. In [4], end-users are re-
quired to provide performance and quality models of ex-
pected application behavior to the system. Ontological rep-
resentations of performance models have been investigated
in the context of workflow composition in Askalon [20]. Lera
et al. [15] proposed the idea of developing performance-
related ontologies that can be queried and reasoned upon
to analyze and improve performance of intelligent systems.
Zhou et. al. [22] used rule-based systems to configure component-
level parameters. While beyond the scope of this paper, we
seek to complement our framework with such approaches in
the near future.

3. MOTIVATING APPLICATIONS
Our work is motivated by the requirements of applications

that process multidimensional data. We use the following
two application scenarios from the biomedical image analysis
domain in our evaluation. Each application has different
characteristics and end-user requirements.

Application 1: Pixel Intensity Quantification (PIQ):
Figure 1 shows a data analysis pipeline [5] (developed by
neuroscientists at the National Center for Microscopy and
Imaging Research) for images obtained from confocal mi-
croscopes. This analysis pipeline quantifies pixel intensity
within user-specified polygonal query regions of the images
through a series of data correction steps as well as threshold-
ing, tessellation, and prefix sum generation operations. This
workflow is employed in studies that involve comparison of
image regions obtained from different subjects as mapped to
a canonical atlas (e.g., a brain atlas). From a computational
point of view, the main end-user requirements are (1) to min-
imize the execution time of the workflow while preserving the
highest output quality, and (2) to support the execution of
potentially terabyte-sized out-of-core image data.

Figure 1: PIQ workflow

Application 2: Neuroblastoma Classification (NB):
Figure 2 shows a multi-resolution based tumor prognosis
pipeline [12] (developed by researchers at the Ohio State
University) applied to images from high-power light microscopy
scanners. This workflow is employed to classify image data
into grades of neuroblastoma, a common childhood can-
cer. Our primary goal is to optimally support user queries
while simultaneously meeting a wide range of application-
level QoS requirements. Examples of such queries include:
“Minimize the time taken to classify image regions with 60%
accuracy” or “Determine the most accurate classification of
an image region within 30 minutes, with greater importance

attached to feature-rich regions”. Here, accuracy of clas-
sification and richness of features are application domain-
specific concepts and depend on the resolution at which the
image is processed. In [14], we developed heuristics that
exploit the multi-resolution processing capability and the
inherent spatial locality of the image data features in order
to provide improved responses to such queries.

Figure 2: NB workflow

These applications are different in terms of their their
workflow structures and the operations they perform on the
data: The NB workflow processes a portion or chunk of
a single image at a time using a sequence of operations.
The end-result for an image is an aggregate of results ob-
tained from each independently processed chunk. PIQ, on
the other hand, contains operations that are not pleasingly
parallelizable and operate on entire images (with multiple fo-
cal planes), hence requiring parallel algorithms for efficient
processing of out-of-core data.

4. PERFORMANCE OPTIMIZATIONS
In this section we discuss several techniques for improv-

ing performance of workflows. Drawing from the applica-
tion scenarios, we also present parameters that impact the
performance of applications in the spatial data analysis do-
main. We classify these parameters into two main categories,
quality-preserving parameters and quality-trading parame-
ters, and explain how they can influence performance and/or
output quality.

4.1 Quality-preserving parameters
Chunking Strategy: Individual data elements (e.g. im-

ages) in a spatial dataset may be larger than the physical
memory space on a compute resource. Relying on virtual
memory alone is likely to yield poor performance. In general,
the processing of large, out-of-core spatial data is supported
by partitioning it into a set of data chunks, each of which
can fit in memory, and by modifying the analysis operations
to operate on chunks of data at a time. Here, a data chunk
provides a higher-level abstraction for data distribution and
is the unit of disk I/O and data exchange between proces-
sors. In the simplest case, we can have a uniform chunking
strategy, i.e. every chunk has the same shape and size. For
2-D data, this parameter is represented by a pair [W,H],
where W and H respectively represent the width and height
of a chunk. In our work, we use this simplified strategy and
refer to this parameter as chunksize. The chunksize pa-
rameter can influence application execution in several ways.
The larger a chunk is, the greater the amount of disk I/O
and inter-processor communication for that chunk will likely

be, albeit the number of chunks will be smaller. The chunk-

size affects the number of disk blocks accessed and network
packets transmitted during analysis. However, larger chunks
imply a decreased number of such chunks to be processed,
and this could in turn, decrease the job scheduling over-
heads. Moreover, depending on the memory hierarchy and
hardware architecture present on a compute resource, the
chunksize can affect cache hits/misses for each component
and thus, the overall execution time. For the PIQ workflow,
we observed that varying chunksize resulted in differences
in execution time. Moreover, the optimal chunksize for one
component may not be optimal for other components; some
components prefer larger chunks, some prefer square-shaped
chunks over thin-striped chunks, while others may function
independent of the chunksize.

Component configuration: Components in a workflow
could have many algorithmic variants. Traditionally, algo-
rithmic variants are chosen based on the type of the input
data to the component. However, choosing an algorith-
mic variant can affect the application performance based
on resource conditions/availability and data characteristics,
even when each variant performs the analysis differently but
produces the same output and preserves the output qual-
ity. In an earlier work [13], we developed three parallel-
algorithmic variants for the warp component of the PIQ
workflow. We observed that depending on the available re-
sources – slow/fast processor/network/disk – each variant
could outperform the other. No single variant performed
best under all resource conditions.

Task Granularity and Execution Strategy: A work-
flow may consist of many components. If a chunk-based
processing of datasets is employed, creating multiple copies
of a component instance may speed up the process through
data parallelism. How components and component copies
are scheduled, grouped, and mapped to machines in the en-
vironment will affect the performance, in particular if the
environment consists of a heterogeneous collection of com-
putational resources. An approach could be to treat each
(component instance, chunk) pair as a task and each ma-
chine in the environment as a Grid site. This provides a
uniform mechanism for execution within a Grid site as well
as across Grid sites. It also enables maximum flexibility
in using job scheduling systems such as Condor [19]. How-
ever, if the number of component instances and chunks is
large, then the scheduling and data staging overheads may
assume significance. An alternative strategy is to group mul-
tiple components into meta-components and map/schedule
these meta-components to groups of machines. Once a meta-
component is mapped to a group of machines, a combined
task- and data-parallelism approach with pipelined dataflow
style execution can be adopted within the meta-component.
When chunking is employed, the processing of chunks by
successive components (such as threshold and tessellate in
the PIQ workflow) can be pipelined such that, when a com-
ponent C1 is processing a chunk i, then the downstream
component C2 can concurrently operate on chunk i + 1 of
the same data element. A natural extension to pipelining
is the ability to stream data between successive workflow
components mapped to a single Grid site, so that the inter-
mediate disk I/O overheads can be avoided.

4.2 Quality-trading parameters
Data resolution: Spatial data has an associated notion

of quality. The resolution parameter for a data chunk
takes values from 1 to n, where n represents the chunk at its
highest quality. In a multi-resolution processing approach, a
chunk can be processed at multiple resolutions to produce
output of varying quality. Execution time increases with
resolution because higher resolutions contain more data
to be processed. In general, chunks need to be processed
only at the lowest target resolution that can yield a result
of adequate quality.

Processing order: The processing order parameter
refers to the order in which data chunks are operated upon
by the components in a workflow. Our previous work [14]
with the NB workflow showed how out-of-order processing
of chunks (selecting a subset of “favorable” chunks ahead of
other chunks) in an image could yield improved responses
(by a factor of 40%) to user queries with various quality-of-
service requirements.

5. WORKFLOW COMPOSITION AND EX-
ECUTION FRAMEWORK

In this section, we describe our framework to support
specification and execution of data analysis workflows. The
framework consists of three main modules. The descrip-
tion module implements support for high-level specification
of workflows. In this module, the application structure and
data characteristics for the application domain are presented
to the system. This representation is independent of ac-
tual data instances used in the application and the com-
pute resources on which the execution is eventually carried
out. The execution module is responsible for workflow ex-
ecution, given the high-level description of the workflow,
datasets to be analyzed, a target distributed execution envi-
ronment. Lastly, the trade-off module, implements runtime
mechanisms to enable performance-quality trade-offs based
on user-specified QoS requirements and constraints. The
architecture of the framework is illustrated in Figure 3.

5.1 Description Module (DM)
The Description Module (DM) is implemented using the

WINGS (Workflow Instance Generation and Selection) sys-
tem [10]. In the WINGS system, the building blocks of
a workflow are components and data types. Application
domain-specific components are described in component li-
braries. A component library specifies the input and output
data types of each component and how metadata properties
associated with the input data types relate to those associ-
ated with the output for each component. The data types
themselves are defined in a domain-specific data ontology.
WINGS allows users to describe an application workflow
using semantic metadata properties associated with work-
flow components and data types at a high level of abstrac-
tion. This abstraction is known as a workflow template. The
workflow template and the semantic properties of compo-
nents and data types are expressed using the Web Ontol-
ogy Language(OWL)3. A template effectively specifies the
application-specific workflow components, how these com-
ponents are connected to each other to form the workflow

3http://www.w3.org/TR/owl-ref

Figure 3: Framework architecture

graph, and the type of data exchanged between the compo-
nents. The template is data instance independent; it speci-
fies data types consumed and produced by the components
but not particular datasets. WINGS can use the semantic
descriptions to automatically validate a given workflow, i.e.,
if two components are connected in the workflow template,
WINGS can check whether output data types of the first
component are consistent with the input data types of the
second component. Given a workflow template, the user
can specify a data instance (e.g., an image) as input to the
workflow and the input argument values to each component
in the workflow. Using a workflow template and the input
metadata, WINGS can automatically generate a detailed
specification of the workflow components and data flow in
the form of a DAG (also referred to as an expanded workflow
instance) for execution.

The WINGS system provides “core” ontologies that can
describe generic components and data types. For any new
application domain, these core ontologies can be extended to
capture domain-specific information. Semantic descriptions
for new data types and components are stored in domain-
specific ontologies. Workflow templates for applications within
that domain are constructed using these ontologies. Next,
we present the data ontology we have developed for our mo-
tivating applications.

Domain-specific Data Ontology: The core data ontol-
ogy in WINGS contains OWL-based hierarchical definitions
for generic data entities such as a File, a Collection of
Files of the same type, and CollOfCollections. We have
extended this core ontology as shown in Figure 4 to capture
the data model commonly adopted in applications within
the spatial data analysis domain. For instance, chunk-based
analysis of out-of-core image data requires the expression of
the data at various levels of abstraction: image, chunk, tile,
slice, and stack. Our domain-specific data ontology defines

these concepts and how they relate to each other, and al-
lows application data flow to be described in terms of these
concepts. While this ontology is not exhaustive, it is generic
enough to represent typical application instances such as the
PIQ and NB workflows. It can also be extended to support
a wider range of spatial data applications. The core com-
ponent ontology in WINGS was also extended to represent
sequential components, component collections (bag-of-tasks
style operations), and complex parallel components in our
workflows.

Figure 4: Extensions to core WINGS data ontology

For component collections, multiple instances of a compo-
nent can be dynamically created depending on the properties
of the data, and tasks corresponding to these instances are
scheduled independently for execution. This enables perfor-
mance improvements by adjusting both the task- and data-
parallelism parameter of the application workflow as well
as application performance parameters such as chunksize.
The chunksize parameter dictates the unrolling of compo-
nent collections in a workflow template into a bag of tasks in
the workflow instance for a given input. As an example as-
sume the chunksize value chosen for an input image results
in the image being partitioned into 4 chunks. The corre-
sponding unrolled workflow instances for the PIQ and NB
workflows are shown in Figure 5. The cases where multiple
‘ovals’ exist at the same horizontal level indicate component
collections that have been automatically expanded, based on
the chunksize, into multiple (in this case 4) component in-
stances. Thus, changing the chunksize parameter can lead
to different workflow structures depending on the data.

In our current system, we also support the notion of meta-
components or explicit component-grouping. A meta-component
is a combination of components in a workflow. For example,
the grey rectangles for the NB workflow in Figure 5 indi-
cate that all steps have been fused into a meta-component.
By coalescing components into meta-components, a higher-
granularity template of the workflow can be created. The
higher-granularity template and meta-components correspond
to the adjustment of the task granularity parameter for per-
formance optimization. During execution, all tasks within a
meta-component are scheduled at once and mapped to the
same resources.

Figure 5: Expanded workflow instance for PIQ
and NB workflows (chunksize is chosen such that
#chunks=4).

5.2 Execution Module (EM)
The Execution Module (EM) consists of three subsystems

that work in an integrated fashion to execute workflows in
a distributed environment and on cluster systems:

Pegasus Workflow Management System is used to
reliably map and execute application workflows onto diverse
computing resources in the Grid [9]. Pegasus takes resource-
independent workflow descriptions (DAX) generated by the
DM and produces concrete workflow instances with addi-
tional directives for efficient data transfers between Grid
sites. Portions of workflow instances are mapped onto dif-
ferent sites, where each site could potentially be a hetero-
geneous, cluster-style computing resource. Pegasus is used
to manipulate the component config parameter, i.e. the
component transformation catalog can be modified to select
an appropriate mapping from components to analysis soft-
ware for a given workflow instance. Pegasus also supports
runtime job clustering to reduce scheduling overheads. Hor-
izontal clustering groups together tasks at the same level
of the workflow (e.g. the unrolled tasks from a component
collection), while vertical clustering can group serial tasks
from successive components. All tasks within a group are
scheduled for execution on the same set of resources. How-
ever, Pegasus does not currently support pipelined dataflow
execution and data streaming between components. This
support is provided by DataCutter [1] as explained later in
this section.

Condor [19] is used to schedule tasks across machines.
Pegasus submits tasks in the form of a DAG to Condor in-
stances running locally at each Grid site.

DataCutter [1] is employed for pipelined dataflow exe-
cution of portions of a workflow mapped to a Grid site con-
sisting of cluster-style systems. A task mapped and sched-
uled for execution by Condor on a set of resources may
correspond to a meta-component. In that case, the exe-
cution of the meta-component is carried out by DataCut-
ter in order to enable the combined use of task- and data-
parallelism and data streaming among components of the
meta-component. DataCutter uses the filter-stream pro-
gramming model, where component execution is broken down
into a set of filters that communicate and exchange data via
a stream abstraction. For each component, the analysis logic
(expressed using high-level languages) is embedded into one
or more filters in DataCutter. Each filter executes within
a separate thread, allowing for CPU, I/O and communica-
tion overlap. Multiple copies of a filter can be created for
data parallelism within a component. A stream denotes a

unidirectional data flow from one filter (i.e., the producer)
to another (i.e., the consumer). Data exchange among fil-
ters on the same node is accomplished via pointer hand-off
while message passing is used for filters on different nodes.
In our framework, we employ a version of DataCutter that
uses MPI for communication to exploit the use of high-speed
interconnects.

5.3 Trade-off Module (TM)
When large datasets are analyzed using complex opera-

tions, an analysis workflow may take too long to execute.
In such cases, users may be willing to accept lower qual-
ity output for reduced execution time, especially when there
are constraints on resource availability. The user may, how-
ever, desire that a certain application-level quality of ser-
vice (QoS) be met. Examples of QoS requirements in image
analysis include Maximize the average confidence in classi-
fication of image tiles within t time units and Maximize the
number of image tiles, for which the confidence in classifi-
cation exceeds the user-defined threshold, within t units of
time [14]. We have investigated techniques which dynami-
cally order the processing of data elements to speed up ap-
plication execution while taking into account user-defined
QoS requirements on output quality. The Trade-off Module
(TM) draws from and implements the runtime support for
these techniques so that quality of output can be traded for
improved performance.

We provide generic support for such a reordering of data
processing in our framework by extending Condor’s job schedul-
ing component. When a batch of tasks (such as those pro-
duced by expansion of component collections in a WINGS
workflow instance) is submitted to Condor, it uses a default
FIFO ordering of task execution. Condor allows users to set
the relative priorities of jobs in the submission queue. How-
ever, only a limited range (-20 to +20) of priorities are sup-
ported by the condor prio utility, while a typical batch could
contain tasks corresponding to thousands of data chunks.
Moreover, condor prio does not prevent some tasks from be-
ing submitted to the queue in the first place. In our frame-
work, we override Condor’s default job scheduler by invoking
a customized scheduling algorithm that executes as a regu-
lar job within Condor’s “scheduler” universe and does not
require any super-user privileges. The scheduling algorithm
implements a priority queue based scheme [14] in a manner
that is not tied to any particular application. It relies on the
semantic representations of the data chunks being processed
in a batch in order to map jobs to the spatial coordinates of
the chunks. Using this association, the priority queue within
the custom scheduler can decide which job to schedule next,
based on the spatial coordinates of the chunk belonging to
that job’s specification. The custom scheduler can be em-
ployed for any application within the spatial data analysis
domain. The priority queue insertion scheme can be manip-
ulated for different QoS requirements such that jobs corre-
sponding to the favorable data chunks are released ahead of
other jobs. In this way, the customized scheduler helps ex-
ercise control over the processing order parameter. When
there are no QoS requirements, our framework reverts to the
default job scheduler within Condor.

5.4 Framework Application
Our current implementation of the proposed framework

supports the performance optimization requirements associ-

ated chunk-based image/spatial data analysis applications.
However, the framework can be employed in other data anal-
ysis domains. The customized Condor scheduling module
facilitates a mechanism for trading output accuracy for per-
formance with user-defined quality of service requirements.
For other types of performance optimization parameters, the
current implementation of the framework provides support
for users to specify and express the values of various per-
formance parameters to improve performance of the work-
flow. We view this as a first step towards an implementation
that can more automatically map user queries to appropri-
ate parameter value settings. We target application scenar-
ios where a given workflow is employed to process a large
number of data elements (or a large dataset that can be
partitioned into a set of data elements). In such cases, a
subset of those data elements could be used to search for
suitable parameter values (by applying sampling techniques
to the parameter space) during workflow execution and sub-
sequently refining the choice of parameter values based on
feedback obtained from previous runs. Statistical modelling
techniques similar to those used in the Network Weather
Service [21] can be used to predict performance and qual-
ity of future runs based on information gathered in previous
runs.

6. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of

our proposed framework using the two real-world applica-
tions, PIQ and NB, described in section 3. Our evaluation
was carried out across two heterogeneous clusters hosted at
different locations at the Ohio State University. The first
one (referred to here as RII-MEMORY) consists of 64
dual-processor nodes equipped with 2.4 GHz AMD Opteron
processors and 8 GB of memory, interconnected by a Gigabit
Ethernet network. The storage system consists of 2x250GB
SATA disks installed locally on each compute node, joined
into a 437GB RAID0 volume. The second cluster, RII-
COMPUTE, is a 32-node cluster consisting of faster dual-
processor 3.6 GHz Intel Xeon nodes each with 2 GB of
memory and only 10 GB of local disk space. This clus-
ter is equipped with both an InfiniBand interconnect as
well as a Gigabit Ethernet network. The RII-MEMORY
and RII-COMPUTE clusters are connected by a 10-Gigabit
wide-area network connection – each node is connected to
the network via a Gigabit card; we observed about 8 Giga-
bits/sec application level aggregate bandwidth between the
two clusters. The head-node of the RII-MEMORY cluster
also served as the master node of a Condor pool that spanned
all nodes across both clusters. A Condor scheduler instance
running on the head-node functioned both as an opportunis-
tic scheduler (for “vanilla universe” jobs) and a dedicated
scheduler (for parallel jobs). The “scheduler” universe jobs
in Condor, including our customized scheduling algorithm,
when applicable, run on the master node. All other nodes of
the Condor pool were configured as worker nodes that wait
for jobs from the master. DataCutter instances executing
on the RII-COMPUTE cluster use the MVAPICH flavor4

of MPI for communication in order to exploit InfiniBand
support.

In the following experiments, we evaluate the performance
impact of a set of parameter choices on workflow execution

4http://mvapich.cse.ohio-state.edu

time. First, a set of Quality-Preserving parameters are ex-
plored, as we would initially like to tune the performance
without modifying the results of the computation. We sub-
sequently investigate the Quality-trading parameters. In our
experiments, we treat different parameters independently,
selecting a default value for one parameter while exploring
another. The decision as to which parameter to explore first
is one that can either be made by an application program-
mer, or can be evaluated systematically by a set of measure-
ments, such as the sensitivity analysis found in [7].

6.1 Quality-preserving Parameters
The basic template for the PIQ workflow is one where

tasks corresponding to each component and component col-
lection are mapped to target sites by Pegasus. Our earlier
work [13] showed that components like normalize and au-
toalign execute in less time on faster machines equipped with
high-speed interconnects. Based on these experiences, we
adopted a specific component placement strategy to achi-
eve improved performance. Components zproject, prenor-
malize, stitch, reorganize, warp and the preprocessing tasks
execute on the RII-MEMORY cluster, while normalize, au-
toalign and mst execute on the faster processors of the RII-
COMPUTE cluster. This component placement strategy
allows for maximum overlap between computation and data
communication between sites for the PIQ workflow, in ad-
dition to mapping compute-intensive tasks to faster sites.

Effects of chunksize: For these experiments, we used
a 5 GB image with 8 focal planes, where each plane has
15360× 14000 pixels. The chunksize parameter determines
the unrolling factor for component collections in the tem-
plate. Different chunksize parameter values resulted in
workflow instances with different structures with different
number of tasks, as shown in table 1.

chunksize # of chunks # of jobs in workflow
(pixels) in a plane (no (horizontal

clustering) clustering::32)
512 × 480 900 2708 95
1024 × 960 225 683 32
1536 × 1440 100 308 20
2560 × 2400 36 116 14
3072 × 2880 25 83 9
5120 × 4800 9 35 9

Table 1: Number of jobs in workflow instance for
each chunksize

The disparity among the number of resulting tasks for
different chunksizes will grow when we have larger images
(leading to more chunksize values) and more component
collections. Hence, job submission and scheduling overheads
play a significant role in the overall execution times. To al-
leviate these overheads, a possible runtime optimization is
to use horizontal job clustering by Pegasus for every compo-
nent collection. (The table also shows the total number of
tasks for each chunksize value when tasks from component
collections in the PIQ workflow are grouped into bundles of
32 tasks each.)

Figure 6 shows the overall execution time for each work-
flow instance corresponding to a different chunksize, both
with and without using horizontal job clustering by Pega-
sus. This includes the time to stage-in and stage-out data

for each site, the execution times for tasks from each com-
ponent, and the job submission and scheduling overheads.
We observe that: (1) Values at both extremes of the chunk-

size range do not yield good performance. The submission
and scheduling of a large number of tasks causes poor per-
formance when the smallest chunksize value is used. For
the largest chunksize value, the number of chunks in an
image place becomes less than the number of worker nodes
available for execution. Since each task operates at the min-
imum granularity of a chunk, this leads to under-utilization
of resources and hence, higher execution times. (2) The in-
termediate values for chunksize yield more or less similar
performance, except for an unexpected spike at chunksize

= 2560 × 2400. On further analysis of the individual com-
ponent performance, we observed that the algorithm variant
used for the warp component (which accounts for nearly 50%
of the overall execution time of PIQ) performed poorly at
this chunksize value. This shows that the chunking strat-
egy can affect performance not only at the workflow level
but also at the level of each component. (3) Horizontal job
clustering improves performance when the unrolling factor
for each component collection is large. For larger chunksize
values, this factor is not high enough to justify the overheads
of job clustering.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

512x480 1024x960 1536x1440 2560x2400 3072x2880 5120x4800

E
xe

cu
tio

n
tim

e
(s

ec
)

Chunksize (pixels)

No job clustering
with Pegasus horizontal clustering

Figure 6: Total workflow execution time for various
chunksize parameter values

We observed similar trends for large images as well. Our
experiments with 75 different chunksize values for a 17 GB
image (with 3 focal planes, each plane having 36864×48000
pixels) showed that very small or very large chunk sizes lead
to poor performance owing to reasons outline above. We
also observed that chunksize values that resulted in long
horizontal stripe chunks yielded optimal performance for
this workflow and image class. This shows that most analy-
sis operations in the PIQ workflow favor horizontal striped
chunks. In future endeavors, our framework will seek to de-
termine the best values of parameters like chunksize based
on trends generated from training data.

Effect of Task Granularity: In these experiments, we
coalesced components of the PIQ workflow into meta-components
to produce a workflow template with a coarser task granular-
ity. In this case, tasks corresponding to a meta-component
(and not a component), are submitted to the execution mod-
ule. Here, the zproject and prenormalize steps from the orig-
inal template are fused to form metacomponent1, normalize,

autoalign, mst are collectively metacomponent2 while stitch,
reorganize, warp form metacomponent3. Preprocess is the
fourth meta-component in the workflow template and in-
cludes the threshold, tessellate and prefix sum components.
By using this representation, our framework further reduces
the number of tasks in a workflow instance. When compo-
nent collections are embedded within a meta-component,
they are not explicitly unrolled at the time of workflow
instance generation. Instead, they are implicitly unrolled
within a DataCutter instance. That is, the chunksize input
parameter to a meta-component is propagated to the Data-
Cutter filters set up for each component within that meta-
component. Based on chunksize, DataCutter will create
multiple copies of filters that handle the processing of com-
ponent collection tasks. Each such filter copy or instance will
operate on a single chunk. We also manipulated the execu-
tion strategy within the preprocess meta-component alone,
such that data within this meta-component is pipelined and
streamed between its components without any disk I/O dur-
ing execution.

 0

 500

 1000

 1500

 2000

 2500

 3000

Full workflow zproject normalize reorganize autoalign warp

E
xe

cu
tio

n
tim

e
(s

ec
)

Component

Low task granularity
High task granularity (metacomponents)

Figure 7: Execution time with different task granu-
larity (5GB image, 40 nodes, chunksize=512 × 480)

Figure 7 shows that the overall execution time for the
PIQ workflow improves by over 50% when we use the high-
granularity workflow template for execution. The figure also
shows the changes in execution times for individual compo-
nents of the workflow. Embedding heterogeneous parallel
components like autoalign and warp, as expected, makes no
difference to their execution times. However, component col-
lections like zproject, normalize and reorganize benefit from
the high-granularity execution. This difference is attributed
to the two contrasting styles of execution that our frame-
work can offer by integrating Pegasus and DataCutter. Pe-
gasus is a batch system where the execution of each task
is treated independently. If startup costs (e.g. MATLAB
invocation or JVM startup) are involved in the execution of
a task within a component collection, such overheads are in-
curred for each and every task in the collection. In contrast,
DataCutter can function like a service-oriented system, in
which filters are set up on each worker node. These filters
perform the desired startup operations on each node and
process multiple data instances, much like a service. The
input data to a collection can be streamed through these
filters. Thus, effectively, the startup overheads are incurred
only once per worker. Depending on the nature of the tasks

within a collection, our framework can use explicit unrolling
and execution via Pegasus, or implicit unrolling within a
meta-component and execution via DataCutter.

6.2 Quality-trading Parameters
These experiments demonstrate performance gains obtained

when one or more quality-trading parameters were changed
in response to queries with QoS requirements. The opti-
mizations in these experiments are derived from the custom
scheduling approach described in section 5.3 that makes data
chunk reordering decisions dynamically as and when jobs
are completed. In all our experiments, we observed that
the overall execution time using our custom scheduling al-
gorithm within Condor is only marginally higher than that
obtained from using the default scheduler, thereby show-
ing that our approach introduces only negligible overheads.
These experiments were carried out on the RII-MEMORY
cluster 5 with Condor’s master node running our customized
scheduler. We carried out evaluations using multiple images
(ranging in size from 12 GB to 21 GB) that are character-
ized by differences in their data (feature) content. We target
user queries with two kinds of QoS requirements: Require-
ment 1: Maximize average confidence across all chunks in
an image within time t; Requirement 2: Given a con-
fidence in classification threshold, maximize the number of
finalized chunks for an image within time t. These require-
ments can be met by tuning combinations of one or more
relevant quality-trading parameters.

Tuning both the resolution and processing order

parameters for requirement 1: This is useful when chunks
can be processed at lower resolutions so long as the result-
ing confidence exceeds a user-specified threshold. Figure 8
shows how parameter tuning helps achieve higher average
confidence at all points during the execution. Each chunk
is iteratively processed until only that target resolution at
which the confidence exceeds a threshold (set to 0.25 here).
Our custom scheduler prioritizes chunks that are likely to
yield output with higher (confidence

time
) value at lower resolu-

tions.
Results obtained for other test images exhibited similar

improvement trends and also showed that our customized
scheduling extensions to Condor scale well with data size.

Tuning both the resolution and processing order

parameters for requirement 2: Here, the customized
scheduler prioritizes jobs corresponding to chunks that are
likely to get finalized at lower resolutions. Figure 9 shows
how parameter tuning in our framework yields an increased
number of finalized chunks at every point in time during the
execution. The improvement for this particular case appears
very slight because the confidence in classification threshold
was set relatively high as compared to the average confidence
values generated by the classify component, and this gave
our custom scheduler lesser optimization opportunities via
reordering.

Scalability: In this set of experiments (carried out as
part of requirement 2), we scaled the number of worker
nodes in our Condor pool from 16 to 48. Our goal here
was to determine if our custom scheduler could function ef-

5Our goal here is only to demonstrate our framework’s abil-
ity to exploit performance-quality trade-offs, and not adapt-
ability to heterogeneous sets of resources. We note that this
experiment could also be carried out on the same testbed
used for the PIQ application.

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 c
on

fid
en

ce

Processing Time (s)

No parameter tuning
With tuning of ’processing order’ and ’resolution’ parameters

Figure 8: Quality improvement by tuning the pro-

cessing order and resolution parameters

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 fi

na
liz

ed
 c

hu
nk

s

Processing Time (s)

No parameter tuning
With tuning of ’processing order’ and ’resolution’ parameters

Figure 9: Improvement in number of finalized tiles
by tuning parameters

ficiently when more worker nodes are added to the system.
Figure 10 shows how the time taken to process a certain
number of chunks in an image halves as we double the num-
ber of workers. Hence, the scheduler performance scales
linearly when an increasing number of resources need to be
managed.

7. SUMMARY AND CONCLUSIONS
Many scientific workflow applications are data and/or compute-

intensive. The performance of such applications can be im-
proved by adjusting component-level parameters as well as
by applying workflow-level optimizations. In some applica-
tion scenarios, performance gains can be obtained by sac-
rificing quality of output of the analysis, so long as some
minimum quality requirements are met. Our work has in-
troduced a framework that integrates a suite of workflow de-
scription, mapping and scheduling, and distributed data pro-
cessing subsystems in order to provide support for parameter-
based performance optimizations along multiple dimensions
of the parameter space.

Our current implementation of the proposed framework
provides support for users to manually express the values
of the various performance parameters in order to improve

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16 32 48

E
xe

cu
tio

n
tim

e

Number of worker nodes

50% of chunks
All chunks

Figure 10: Scalability with number of worker nodes

performance. We have customized the job scheduling mod-
ule of the Condor system to enable support for trading off
output quality for performance in our target class of ap-
plications. The experimental evaluation of the proposed
framework shows that adjustments of quality-preserving and
quality-trading parameters lead to performance gains in two
real applications. The framework also achieves improved re-
sponses to queries involving quality of service requirements.
As a future work, we will incorporate techniques to search
the parameter space in a more automated manner. We tar-
get application scenarios in which a large number of data
elements or a large dataset that can be partitioned into
a number of chunks are processed in a workflow. In such
cases, a subset of the data elements could be used to search
for suitable parameter values during workflow execution and
subsequently refining the choice of parameter values based
on feedback obtained from previous runs.

8. REFERENCES
[1] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang,

A. Sussman, and J. Saltz. Distributed processing of very
large datasets with DataCutter. Parallel Computing,
27(11):1457–1478, November 2001.

[2] I. Brandic, S. Pllana, and S. Benkner. Specification,
planning, and execution of QoS-aware Grid workflows
within the Amadeus environment. Concurrency and
Computation: Practice and Experience, 20(4):331–345,
2008.

[3] F. Chang and V. Karamcheti. Automatic configuration and
run-time adaptation of distributed applications. In High
Performance Distributed Computing, pages 11–20, 2000.

[4] D. Chiu, S. Deshpande, G. Agrawal, and R. Li. Cost and
accuracy sensitive dynamic workflow composition over Grid
environments. 9th IEEE/ACM International Conference
on Grid Computing, pages 9–16, Oct. 2008.

[5] S. K. Chow, H. Hakozaki, D. L. Price, N. A. B. MacLean,
T. J. Deerinck, J. C. Bouwer, M. E. Martone, S. T. Peltier,
and M. H. Ellisman. Automated microscopy system for
mosaic acquisition and processing. Journal of Microscopy,
222(2):76–84, May 2006.

[6] I.-H. Chung and J. Hollingsworth. A case study using
automatic performance tuning for large-scale scientific
programs. 15th IEEE International Symposium on High
Performance Distributed Computing, pages 45–56, 2006.

[7] I.-H. Chung and J. K. Hollingsworth. Using information
from prior runs to improve automated tuning systems. In
SC ’04: Proceedings of the 2004 ACM/IEEE conference on

Supercomputing, page 30, Washington, DC, USA, 2004.
IEEE Computer Society.

[8] V. Cortellessa, F. Marinelli, and P. Potena. Automated
selection of software components based on cost/reliability
tradeoff. In Software Architecture, Third European
Workshop, EWSA 2006, volume 4344 of Lecture Notes in
Computer Science. Springer, 2006.

[9] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, M.-H. Su, K. Vahi, and M. Livny. Pegasus:
Mapping scientific workflows onto the Grid. Lecture Notes
in Computer Science: Grid Computing, pages 11–20, 2004.

[10] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim.
Wings for Pegasus: Creating large-scale scientific
applications using semantic representations of
computational workflows. In Proceedings of the 19th
Annual Conference on Innovative Applications of Artificial
Intelligence (IAAI), July 2007.

[11] T. Glatard, J. Montagnat, and X. Pennec. Efficient services
composition for Grid-enabled data-intensive applications.
In Proceedings of the IEEE International Symposium on
High Performance Distributed Computing (HPDC’06),
Paris, France, June 19, 2006.

[12] J. Kong, O. Sertel, H. Shimada, K. Boyer, J. Saltz, and
M. Gurcan. Computer-aided grading of neuroblastic
differentiation: Multi-resolution and multi-classifier
approach. IEEE International Conference on Image
Processing, ICIP 2007, 5:525–528, Oct. 2007.

[13] V. Kumar, B. Rutt, T. Kurc, U. Catalyurek, T. Pan,
S. Chow, S. Lamont, M. Martone, and J. Saltz. Large-scale
biomedical image analysis in Grid environments. IEEE
Transactions on Information Technology in Biomedicine,
12(2):154–161, March 2008.

[14] V. S. Kumar, S. Narayanan, T. M. Kurç, J. Kong, M. N.
Gurcan, and J. H. Saltz. Analysis and semantic querying in
large biomedical image datasets. IEEE Computer,
41(4):52–59, 2008.

[15] I. Lera, C. Juiz, and R. Puigjaner. Performance-related
ontologies and semantic web applications for on-line
performance assessment intelligent systems. Sci. Comput.
Program., 61(1):27–37, 2006.

[16] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific
workflow management and the Kepler system: Research
articles. Concurr. Comput.: Pract. Exper.,
18(10):1039–1065, 2006.

[17] B. Norris, J. Ray, R. Armstrong, L. C. Mcinnes, and
S. Shende. Computational quality of service for scientific
components. In Proceedings of the International
Symposium on Component-based Software Engineering
(CBSE7), pages 264–271. Springer, 2004.

[18] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, 2004.

[19] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the Condor experience: Research
articles. Concurr. Comput. : Pract. Exper.,
17(2-4):323–356, 2005.

[20] H.-L. Truong, S. Dustdar, and T. Fahringer. Performance
metrics and ontologies for grid workflows. Future
Generation Computer Systems, 23(6):760 – 772, 2007.

[21] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation
Computing Systems, 15:757–768, 1999.

[22] J. Zhou, K. Cooper, and I.-L. Yen. A rule-based component
customization technique for QoS properties. Eighth IEEE
International Symposium on High Assurance Systems
Engineering, pages 302–303, March 2004.

